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Abstract 

In a pre~,ious paper [Khachaturyan, Semenovskaya & 
Vainshtein (1979). Soy. Phys. Crystallogr. 24, 519- 
524], the thermodynamic formulation of the procedure 
of crystal structure determination from the intensity 
array of X-ray reflections was proposed. This approach 
requires the introduction of analogues of such thermo- 
dynamic functions as the free energy, entropy, tempera- 
ture and so on, and it is reduced to the solution of the 
specific 'kinetic equation'. It was shown that the 
equilibrium state of the system is described by the 
distribution of the scattering substance density which at 
low temperature corresponds to the true structure of 
the crystal. The problem of crystal structure deter- 
mination is thus reduced to determination of the 
equilibrium distribution of the scattering substance. The 
(3nsager equation formalism was applied to derive 
'kinetic equations' describing the relaxation of the 
system to its equilibrium state. The test of the proposed 
procedure exemplified by the solution of the 'kinetic 
equation' to determine the crystal structure of L-proline, 
CsHgNO2, with 32 atoms per unit cell is considered. 

I. Introduction 

In some cases the structure analysis proves to be easier 
if instead of the crystal under investigation we consider 
a model crystal consisting of homogeneous spheres of 
the same radius r 0 which replace the atoms of the real 
crystal. The transition to the model crystal composed 
of these spheres results in the following transformation 
of the intensity array (Khachaturyan, Semenovskaya 
& Vainshtein, 1979): 

I°bs(H) [ v 12 
lobs(H)--,lexp(H)-I~(H)I 2. ---~O(H) , (I) 

where lobs(H) are observed diffraction intensities in 
absolute units, H is the reciprocal-lattice vector, s?(H) is 
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the average atomic factor of the crystal, .(2 is the 
unit-cell volume, v is the volume of the sphere, 

sin 2rd-/r 0 - 2 rd-/r 0 cos 2rd-/r 0 
O(H) = 3. (2) 

(2zd-/r0) 3 

The transformation of the intensity array (1) is valid 
if all atoms composing the crystal have close atomic 
factors. 

Let us divide the unit cell of the model crystal into a 
fine regular grid, N sites of which are equidistant and 
assume that the scattering substance can occupy only 
sites of the grid labelled by the vector r. 

This model allows the introduction of some 'elemen- 
tary particles' of the scattering substance. The distri- 
bution of the scattering substance within a unit cell then 
may be described in terms of the distribution function 
of 'elementary particles' C(r), which is either equal to 
unity or zero: 

10 if the site r is occupied by a scattering 

C(r) = substance 'particle' (3) 

otherwise. 

For instance, the model crystal composed by spheres 
is described by the specific distribution function C0(r ) 
which is equal to unity if r is within a sphere and zero if 
r is outside it (see Fig. 1). 

The structure amplitudes corresponding to an 
arbitrary distribution of elementary 'particles' may be 
represented in the following form, 

1 
F(H) ___ ~ ~ C(r) e "-i2nH'r. (4) 

r 

One may readily see that intensities IF(H)I 2 related to 
the distribution C0(r) asymptotically tend to intensities 
Iexp(H) given by (1) as N-* oo [the accuracy of the 
representation (4) is greater the higher the value of N]. 

It is worth while emphasizing the analogy between 
the proposed model and the lattice gas model (Hill, 
1956) and the binary substitutional solution model 
(Khachaturyan, 1963). In all these models the distri- 
bution function C(r) describes two states: the presence 
© 1981 International Union of Crystallography 
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of a particle at the site r if C(r) = 1 and its absence if 
C(r) = 0. 

If we have an ensemble of distributions the mean 
structure amplitude over the ensemble can be intro- 
duced as a mean value of (4): 

1 
(F(H))  = ~ -  Z n(r) e -i2~n'', (5) 

T 

where n(r) = (C(r)), ( ) is the symbol of averaging 
over the thermodynamic ensemble. This kinematic 
analogy with a lattice gas can be further extended to 
introduce thermodynamic functions. For example, 
Helmholtz free energy ~ can be obtained by the 
conventional procedure in terms of the partition sum 
(see, for instance, Landau & Lifchitz, 1958). To do it we 
should first choose a configurational Hamiltonian of 
the system. As a Hamiltonian ~ of the lattice gas 
consisted of 'particles' of scattering substance we can 
choose the generalized R index multiplied by the factor 
N: 

[I 1 I 
-4- Z a(H) ~ Z C(r)e -i2'm'' 

H r 

--Iexp (H) ]2, (6) 

where Iexp(H) is given by (1). 
The Hamiltonian (6) assumes minimal value, equal 

to zero, for the distribution function C(r) = C0(r ) 
corresponding to the true structure for any set of 
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Fig. 1. The schematic drawing of the grid in a section of the model 
crystal. 'Particles' of the scattering substance occupy sites of the 
grid. Their segregations imitate atoms. • is a 'particle' of the 
scattering substance where C0(r) = 1. The rest of the grid sites 
where C0(r ) = 0 are vacant. Dashed circles show sections of 
spheres which are described by segregation of particles. 

positive quantities a(H). Introduction of weight 
coefficients a(H) into (6) makes the minimization 
procedure more flexible and precludes false structures 
corresponding to the relative minima. By choosing the 
Hamiltonian in the form (6) one can represent the 
partition sum in a form similar to that in the Ising 
problem: 

zox.( ) 
{ C(r )  } 

= ~.~ . . .  - a(H) 
c(,,) = 0 c(r,) = 0 4T 

with the additional condition 

(7) 

Z C(r)= vN, (8) 
T 

where v is the fraction of the unit cell filled by the 
scattering substance, T is the dimensionless tempera- 
ture. In this case the free energy is 

= - T i n  Z. (9) 

On the other hand, the free energy can be presented in 
the form 

where 

= N R  - T S ,  (10) 

, 1 
tc(r)} Z 

and N R  is the analogue of the internal energy. The 
entropy S can be found by means of the Boltzmann 
equation: 

S = - l n  F ( R ) ,  (11) 

where F ( R )  is the phase space volume corresponding to 
the given energy value R (the number of realizations of 
scattering substance distributions ensuring the same R 
index)• As in ordinary statistical mechanics the 
temperature T introduced into (7) characterizes the 
degree of 'excitation' of the system (the increase of the 
'energy' R). The 'excitation' results in the 'impairment' 
of the true distribution of scattering substance owing to 
its disordering• In this connection the ensemble of the 
considered 'excited' distributions is determined to 
ensure that the mean R index is equal to the given value 
R. The mean distribution over such an ensemble will 
deviate more from the true one the higher the 
temperature of the system is. The formal definition of 
the temperature is 

1 dS 

T dR 
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Free-energy calculation in terms of the partition sum 
(7) is just as complex as that in the case of the Ising 
model of a lattice gas (binary alloy). However, as in the 
Ising model case, we can employ the mean-field 
(self-consistent field) approximation which is asymptot- 
ically correct in the particular case of the low 
temperatures (Suris, 1962), which is just the one we are 
interested in. 

The free energy in the mean-field approximation can 
be written in the form* 

tO = NR + T Z {n(r) In n(r) + [1 -- n(r)] 
F 

x In[ 1 - n(r)] }, (12) 

where, according to the idea of the mean-field approxi- 
mation, fluctuations are ignored, 

R = ( ~ )  

([l'x I 1 ~ a(a) -~- C(r) e - i2"" '  Iox.(a) 
4 n r 

(13) 

1 
a(I'I)t I (F(H)) 12 Ioxp(n)l 2 

4 
H 

and (F(H))  is defined by (5). 
Equation (12) is the analogue of the corresponding 

equations for the free energy of a binary solution in the 
mean-field approximation (Khachaturyan, 1963, 
1978), the first term of (12) is the analogue of the 
internal energy, while the second one is the analogue of 
the entropy term - T S  (see equation 10). The derivation 
of (12) is not given since it is identical to that for a 
binary solution (Khachaturyan, 1963). 

Minimization of the free energy (12) with respect to 
n(r) results in the equilibrium distribution of the 
scattering substance. As has been shown by Khachatu- 
ryan (1963), the function n(r) describing the equilib- 
rium distribution at T = 0 assumes only two values: 1 
or 0. On the other hand, from (12) it follows that when 
T --, 0 the limit transition tO --, NR occurs. 

As follows from (6), the true structure ensures 
minimization of the R index with respect to the 
scattering substance distribution C(r), which takes two 
values: 1 and 0. 

Thus, when T -~ 0 minimization of  free energy (12) 
is equivalent to the minimization of  the R index in (6) 

for the desired variety of  functions assuming the 
values either 1 or O. In other words, when T --, 0 
minimization of  free energy (12) solves the problem of  
determination of  the crystal structure for  a given 
intensity array Iexp(H). 

* The Boltzmann constant K B does not enter (9), (12), and (19) to 
(21) since all thermodynamic functions are expressed in dimension- 
less units. 

It is worth while, however, to note that any crystal 
structure determination procedure based on the direct 
minimization of an R index with respect to atomic 
coordinates has no chance of being successful (Vand, 
Niggli & Pepinsky, 1960; Niggli, Vand & Pepinsky, 
1960). In fact, the R index has a great number of the 
shallow relative minima in the phase space of atomic 
configuration. These minima arrest the minimization 
procedure before the absolute minimum is attained. 
This situation is close to that for real atomic systems. 
The configurational Hamiltonian of atomic systems 
has, as a rule, many shallow relative minima corre- 
sponding to metastable states. The system 'trapped' by 
a relative minimum at 0 K cannot escape it indepen- 
dently since the escape would require the expenditure 
of additional energy to overcome the energy barriers 
separating the minimum from the lower energetic 
states. The situation becomes more favourable at finite 
temperatures when the thermal fluctuations allow the 
system to escape from the metastable state. If the 
relative minimum is shallow it cannot be a ' trap' since 
the phase space volume of the minimum is small and, 
thus, the entropy of the state becomes small as well 
(according to the Boltzmann equation the entropy is 
proportional to the logarithm of the phase space 
volume). The drop of the entropy associated with the 
'trapping' of the system by a shallow relative minimum 
would result in the increase of the Helmholtz free 
energy tO since 

tO= U -  TS. (14) 

According to the second principle of thermodynamics 
any spontaneous process must be accompanied by a 
free-energy decrease. Thus, the above-described drop of 
the entropy and the corresponding free-energy increase 
which occurs when the system is 'trapped' by a shallow 
minimum state can make this state unstable. The latter 
conclusion is physically obvious. A shallow relative 
minimum cannot 'retain' the fluctuating system at finite 
temperatures. Continuing this line of reasoning we can 
conclude that elevating the temperature may result in 
the situation when all minima including the absolute 
one are not able to 'retain' the system. In other words, 
the free energy playing the part of the potential energy 
at finite temperatures is a much smoother function than 
the Hamiltonian. 

The above formulated analogy between the R index 
and the configurational Hamiltonian is the basis of an 
idea which enables us to formulate the thermodynamic 
approach to the structure analysis of crystals. This 
approach implies the replacement of the R index by a 
'smoother' function which is the formal analogue of the 
Helmholtz free energy. 'Smoothness' of this function 
may be controlled by temperature changes. If we have 
a 'smooth' function the real crystal structure can be 
found by means of conventional procedures which are 
variants of the gradient descent method. 
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2. Kinetic equations for density of  scattering substance 
and for structure amplitudes 

The mathematical analogy between the problem of the 
determination of crystal structure and the phase 
transition problem can be extended not only to 
thermodynamics but also to kinetics. In fact we can 
always imagine some kinetic process which involves 
'particles' of scattering substance distributed over sites 
of the grid dividing the unit cell. Being spontaneous, 
this process results in a decrease in free energy (12) 
and, consequently, leads to the desii'ed equilibrium state 
ensuring the absolute minimum of the free energy. 

Roughly following the line suggested by Khachatu- 
ryan (1968) and Morris & Khachaturyan (1978), 
where the microscopic diffusion theory is developed, we 
can use the Onsager equation, which establishes a 
direct proportionality between the rate of relaxation 
parameters and thermodynamic driving forces - the 
variational derivatives of the free energy with respect to 
the relaxation parameters. In the case under con- 
sideration such an equation is 

dn(r,t) J ~  
- -  - - - - L ~  (15) 

dt Jn(r,t) '  

where t is the dimensionless 'time' and L is the kinetic 
coefficient. Since off-diagonal elements of the matrix of 
the kinetic coefficients L ( r - - r ' )  are neglected, (15) 
describes 'creation' and 'annihilation' of particles of the 
scattering substance at each site r of the grid rather 
than diffusional transitions between these sites. The 
kinetic process ceases on the attainment of the 
free-energy minimum when JgVJn(r) = 0. In this case, 
according to (15) Jn(r, t) /dt  = O, i.e. the density 
function n(r,t) ceases to depend on 'time'. 

Let us calculate the 'driving force' of the kinetic 
process Jg~/Jn(r). The variation of (13) with respect to 
n(r) yields 

JR 1 
-- 2 Z a(H)[I<F(H)>I2-- Iexp(H)] 

Jn(r) H 

J<F(H)*> 
x (F(H)> Jn(r) 

J<F(H)>] (16/ 
+ <F(H)*> Jn(r) " 

The variation derivative of (5) has the form 

J<F(H)> 1 
__ e - i2nH,  r. 

Jn(r) N 

Substituting (17) into (16), we obtain 

JR 1 
- N ~ a (H) [ I<F(H)>I2- -  Iexp(H)] ( F ( H ) )  

Jn(r) 
H 

X e i2~H'r. ( 1 8 )  

(17) 

It follows from (12) that 

Jcp JR n(r) 
- N + Tin ~ .  (19) 

Jn(r) ~ - ~  1 -- n(r) 

Putting L = 1 into (15) (this results in the change of the 
'time' scale only) and with (18) and (19), we may 
rewrite (15): 

dn(r,t) n(r,t) 
- - - -  Tin Z a(H)[I(F(H, t )> 12 

dt 1 - n(r,t) . 

-- Iexp(H)] <F(H,t)> d 2~H'. (20) 

Representation of (20) in terms of structure ampli- 
tudes (the reciprocal-lattice representation) can be 
obtained by multiplication of (20) by the factor 
( l /N)  e -i2nH'r and summation over r. 

d(F(H,t)> = - - T  In 
dt 1 - n(r,t) n 

- a ( n )  [I (F(I-I,t) )12 -- Iexp(I-I)](F(n,t) ), 

(21) 

where 

( )  1 
X H m - ~  Z ( X )  e -i2~rH'r 

r 

is the conversion operator of the Fourier transform. 
Equation (21) is the set of nonlinear differential 
equations for structure amplitudes (F(H,t)>, the kernel 
of which includes the array of the normalized intensities 
Iexp(H). 

It is of interest to note that the determination of the 
structure amplitudes proves to be possible only due to 
the first term in (21) since it ensures 'coupling' of 
structure amplitudes related to different reciprocal- 
lattice vectors. The 'coupling' may be visualized if the 
logarithm term in (21) is represented as the power- 
series expanison in An = n(r) -- v, and each term of the 
power series is expressed in terms of the structure 
amplitudes, i.e. 

In = &,o In 
1 -- n(r)JH 1 

v +x-"  
- - V  m 

m---i 

Jn,o In 1 - v m 
m = l  

× <r(n,)> 

(H,, H 2 ..... Hm) 
H I + H2+ ... + Hm=H 

× (22) 
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where 

An(r) = •' (F(H)> d 2'~H'r, 
H ~ 0  

1 i f H = O  

6n.0= 0 otherwise. 

Priming means that the term corresponding to H - 0 is 
omitted. 

Equation (22) shows that kinetic equation (21) [and, 
hence, (20)] automatically extends the conventional 
approach in the structure analysis based on the 
consideration of triplets, quadruplets, quintets, etc. of 
reflections. 

The second term of (21) by itself results in just 
independent relaxation of each structure amplitude and 
thus cannot lead to a change in phases. 

The solution of (20) or (21) at T --, 0 and t --, ~ gives 
the equilibrium densities and structure amplitudes and, 
thus, solves the problem of the crystal structure 
determination. 

It is worth while to note that (20) is the analogue of 
the microscopic equation of the spinodal decom- 
position described and analysed by Khachaturyan 
(1968) and Morris & Khachaturyan (1978). 

The time evolution of the densities n(r,t) provides the 
free-energy decrease. Since the free energy depends 
implicitly on the 'time' through n(r,t) we have 

dO JO dn(r,t) 

d t =  Z Jn(r,t)" dt 
r 

or from (15) for L = 1 

d e  = ~b = _ ~  (dn(r't)12 

dt \ dt 1"  
(23) 

It follows from (23) that the first derivative of the 
free energy is always negative, i.e. kinetic equation (20) 
does provide the monotonous decrease of the free 
energy up to the attainment of the equilibrium state. 

3. Determination of the L-proline structure 

The above-formulated thermodynamic concept in the 
phase determination problem (see also Khachaturyan, 
Semenovskaya & Vainshtein, 1979) is applied below to 
the L-proline structure determination. 

The structure of L-proline C4H7(NH)COOH was 
solved by Kayushina & Vainshtein (1966). L-Proline is 
orthorhombic, space group P212121 with a = 11.55, 

b = 9.02, c = 5.20A. A unit cell contains four 
molecules. In the case of the space group P2x2121 the 
density n(r) = n(x,y,z) is 

{ (hk) 
n(x,y,z) = Y p(hkl) A (hkl) cos 27r hx 

{hkl} 4 

(k,)  (,h) 
- - ~  cos2zc Iz x cos 2zr ky 4 4 

h - k )  
- B(hkl) sin 2zr hx - 

4 

(k_,) ( 
x sin2zc ky 4 sin2zc l z - ~  

,h)} 
4 

(24) 

where x = rx/a, y = ry/b, z = r,/c are dimensionless 
coordinates of the unit-cell point r = (rx,ry,G); h,k,l are 
indices of the reciprocal-lattice vector H = (h,k,l); 
p(hkl) is the multiplicity factor of the reflection H; 
A(hkl) and B(hkl) are real and imaginary parts of the 
structure amplitude: 

(F(hkl)) = A(hkl) + iB(hkt). (25) 

Summation in (24) is taken over all types of reflection 
{hkl}. Amplitudes A(hkl) and B(hkl) are given by the 
relations 

-N1 _ ( h - k ) 4  A(hkl) = ~ n(x,y,z) cos 2n hx 
X,y,Z 

- - ~  cos2z~ lz-- x cos 2zc ky 4 4 

(26) 

N1 ( h - k ) 4  Z n(x,y,z) sin 2zt hx 
X, y , z  

sin 2~ l z  - ~ x s i n 2 ~  k y -  4 4 ' 

B(hkl) - 

where N is the total number of the sites of the grid 
dividing the irreducible part of the unit cell described by 
the range 

0_<x<½; 0 < y < ½ ;  0 _ < z < l .  

Summation in (26) is taken over all N sites of the 
grid. Taking into account (24) and (26) in (20) we can 
rewrite (20) in the form 
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dn(xyz,t) 
- Tin  

dt 

n(xyz, t) 

1 - n(xyz,t) 

-- y p(hkl)a(hkl)[A2(hkl,  t) 
{hkt} 

+ B2(hkl, t) - Iexp(hkl)] 

x cos 2zc ky cos 2~z lz - 

h - k )  
- B(hkl, t) sin 22~ hx 

4 

,_z)4 

(4k ' )  ( l )] x sin 2zc k y - - -  sin 2zc lz ------f-z o 

4 

(27) 

Equation (27) is the set of N differential equations 
for N unknowns n(xyz,t). It describes the 'time' 
evolution of densities at each point r = (x,y,z) of the 
unit cell. These unknowns describe N degrees of 
freedom of the system. In the reciprocal-lattice 
representation of (27) the degrees of freedom will be 
described by the same number N of independent 
variables - structure amplitudes (F(hkl,  t)). Thus, the 
solution of (27) will depend, in general, on N structure 
amplitudes. 

This conclusion remains true even in the case when 
the kernel of (27) includes a reduced number of 
observed intensities. The latter occurs because of 
'coupling' in (27) of structure amplitudes referred to 
various reflections. Since the number of structure 
amplitudes describing the solution of (27) is always 
equal to N, the proposed procedure does not result in 
the wave termination effect. 

Equation (1) with v = 4nr~/3, .Q = abe and f ( H )  = 
f ( H ) e  -nn2 was applied to normalize the theoretical 
intensity array reported b y  Kayushina & Vainshtein 
(1966). The value r 0 = 0.65 A is the radius of spheres 
imitating C, N and O atoms, B -- 0.975 A 2 is the value 
determining the Debye-Wal ler  factor, 

f ( H )  = 3 - 1 .071H + 3.55 e -H~/°'m (28) 

is the average atomic factor attributed to spheres, H = 
2 sin 0/2 in A-I.  

Since the importance of weak diffraction maxima as 
' information carriers'  about the crystal structure is less 
than that of strong ones (Vainshtein & Kayushina,  
1966), we shall use the array consisting of strong 
reflections only. Normalized intensities Iexp(hkI ) of the 

100 strongest reflections regrouped in the order of 
decrease of their magnitudes are listed in Table 1. 

Numerical solution of (27) was carried out by 
iterations 

(dn(xyz, t))  
n(xyz,t") = n(xyz,tm_l) + \ ~ At"_1 , 

/ ,  ~ra-ll 

(29) 

where t m is the 'time' corresponding to the mth iteration 
cycle, At,. is the 'time' step, dn(xyz,t)/dt is given b_y the 
right side of (27). The calculation was carried out for 
N = 10 x 10 x 10 = 1000 sites of the grid with 
coordinates 

x = ~(Ja - ½), Y = ~(J2 - ½), z = ~0(J3 - ½), 

(30) 

where Jl,  J2, J3 are integers within the ranges 1 < Jl < 
10, 1 < J2 < 10, 1 _< J3 -< 10. These sites cover the 
irreducible part of the unit cell. The nearest distance 
between sites corresponds to the resolution of the order 
of a /20  ~ b/20 ~ c/10 ~ 0.5 A. 

The 'time' step At,._ 1 in (29) was estimated proceed- 
ing from the condition of the monotonous decrease of 
the free energy ~(t) :  

N 
¢~(t) = -~- y p(hkl)a(hkl)[A2(hkl,  t) + B2(hkl, t) 

{hkl} 

It is equal to 

where 

-- Iexp(hkl)] 2 + T Z {n(xyz,t) In n(xyz,t) 
x,y,2 

+ [1--n(xyz , t ) ] ln[1--n(xyz , t ) ]} .  (31) 

Atm- 1 =< 
- - ;  if ----~-- < 0 

~200 if At,,,_ I > 200, 

(32) 

d ¢~ ( dn(xyz,t)12 
= d t - - - Z \  dt ]t=t~-, x,y,z 

( ~ , ) t  . . . .  : [( ~ ) t m - , -  ( f~)t..-2]lZllm-2 

50D 

N 
-- ¼ ~, p(hkl)a(hkl)  Iexp(hkl ) - T[vln  v 

{hkl} 

+ (1 - v) In(1 -- v)] (33) 

32v 32(4nr~/3) 
m 

f2 abc 
= 0.068. (34) 
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Table  1. Calculated values of intensities I(F(hkl, ~:))>t 2 and phases (ffhkl for the 100 strongest reflections of the 
normalized intensities array for  L-proline after the six-stage crystal structure determination procedure (see 

Table 3) 

The minimum temperature is T = 10 -7. The final R L value is 0.21. 

h k l Ie× p [ (F> [2 ~tn~e ~ h k l Iex p I(F> 12 ~true 

0 0 0 4.60 -- 03 5"28 -- 03 0"00 + 00 0"00 + 00 0 0 2 1.62 -- 03 1.58 -- 03 0"00 + 00 0"00 + 00 
0 2 0 6.40 -- 04 6"06 -- 04 3" 14 + 00 3" 14 + 00 2 1 1 5" 19 -- 04 4"90 -- 04 1.43 + 00 1.50 + 00 
2 10 4 .94 - -04  4 .63 - -04  3 . 1 4 + 0 0  3 . 1 4 + 0 0  0 4 0  4 .76 - -04  4 .24 - -04  3 . 1 4 + 0 0  3 . 1 4 + 0 0  
0 4 2 3.92 -- 04 3.53 -- 04 --3" 14 + 00 3" 14 + 00 4 0 0 2"74 -- 04 2.44 -- 04 0"00 + 00 0"00 + 00 
5 10 2 .56 - -04  1 .76--04  1 . 5 7 + 0 0  1 . 5 7 + 0 0  4 2 0  2 .56- -04  1 .89--04 3 . 1 4 + 0 0  3 . 1 4 + 0 0  
4 1 0  2 .53 - -04  1 .86--04 3 . 1 4 + 0 0  3 . 1 4 + 0 0  2 0 1  2 .31 - -04  1 .93--04 - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  
7 2 0  2 .12 - -04  1 .96--04  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  2 0 0  1 .99--04  2 .30- -04  0 - 0 0 + 0 0  0 - 0 0 + 0 0  
0 3 2  1 .94--04 1 .68--04  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  3 4 0  1 .86--04  1 .36--04 1 . 5 7 + 0 0  1 . 5 7 + 0 0  
2 1 2  1 .59--04 1 .47--04  - - 2 . 8 9 + 0 0  - - 3 . 0 6 + 0 0  7 2 1  1 .56--04 1 .41--04 - - 3 . 1 2 + 0 0  - - 3 . 0 1 + 0 0  
3 3 0  1-49--04 8 .31- -05  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  3 2 1  1 .47--04 1 .25--04 - - 2 - 3 5 + 0 0  - - 2 . 5 9 + 0 0  
2 0 2  1 .42--04  9 .64- -05  0 . 0 0 + 0 0  0 . 0 0 + 0 0  5 2 0  1 .40--04 1 .09--04 - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  
5 5 0  1 .17--04 1 .11--04  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  01 1 1 .15--04  7 .71- -05  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  
1 0 3  1 .04--04  8 .37- -05  1 . 5 7 + 0 0  1 . 5 7 + 0 0  61 1 1 .03--04  9 .24- -05  1 . 5 7 + 0 0  1 . 6 1 + 0 0  
101  1-02--04 8 .56- -05  1 . 5 7 + 0 0  1 . 5 7 + 0 0  5 1 2  9 .91- -05  9 .61- -05  2 . 1 2 + 0 0  1 . 8 1 + 0 0  
3 4 1 9.83 -- 05 3-33 -- 05 1.29 + 00 6.20 -- 01 0 1 2 9.58 -- 05 7.83 -- 05 1.57 + 00 1.57 + 00 
3 3 2  9 .16- -05  4 .16 - -05  - - 1 . 6 8 + 0 0  - - 1 . 9 2 + 0 0  2 2 2  8 .58- -05  5 .85- -05  - - 1 . 6 1 + 0 0  - - 1 . 9 3 + 0 0  
25 1 8 .42- -05  9 .10- -05  - - 1 . 4 7 + 0 0  - - 1 . 5 2 + 0 0  43  1 8 .41- -05  5 .99- -05  1 - 7 8 + 0 0  1 - 6 6 + 0 0  
0 2 1 8.32 -- 05 4.95 -- 05 0.00 + 00 0.00 + 00 0 2 2 8.20 -- 05 6.88 -- 05 3.14 + 00 3.14 + 00 
6 0 0  7 .91- -05  7 .55- -05  3 . 1 4 + 0 0  3 . 1 4 + 0 0  3 10 7 .89- -05  7 .66- -05  1 . 5 7 + 0 0  1 . 5 7 + 0 0  
0 4 1  7-77--05 4 .46- -05  - - 3 . 1 4 + 0 0  3 . 1 4 + 0 0  5 4 1  7 .62- -05  6-98--05 1.84--01 3 .39 - -02  
0 6 0 7.09 -- 05 6.77 -- 05 0.00 + 00 0.00 + 00 3 1 2 6.92 -- 05 3.98 -- 05 2.03 + 00 1.66 + 00 
4 3 0  6-77--05 3 .73- -05  0 . 0 0 + 0 0  0 . 0 0 + 0 0  5 2 2  6 .76- -05  5 .43- -05  - - 1 . 9 5 + 0 0  - - 1 . 9 2 + 0 0  
6 3 0  6 .67- -05  3 .94- -05  0 . 0 0 + 0 0  0 . 0 0 + 0 0  7 2 2  6 .52- -05  5 .04- -05  - - 1 . 2 2 + 0 0  - - 1 . 4 7 + 0 0  
0 2 3 6.47 -- 05 6.10 -- 05 0.00 + 00 0.00 + 00 6 2 0 6.34 -- 05 3.26 -- 05 0-00 + 00 0-00 + 00 
2 4 2  6 .30- -05  2 .08- -05  2 . 9 0 + 0 0  2 . 2 2 + 0 0  5 3 2  6-21--05 5 .09- -05  - -9 .71--01 - - 1 . 2 0 + 0 0  
5 1 1 6 .13- -05  3 .71- -05  --1.91 + 0 0  - - 1 . 5 7 + 0 0  1 3 0  6 .00- -05  3 .98- -05  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  
41 1 5 .71- -05  2 .11- -05  1 . 7 2 + 0 0  1 . 7 2 + 0 0  2 2 0  5 .63- -05  3 .52- -05  3 . 1 4 + 0 0  3 . 1 4 + 0 0  
1 7 0  5-61--05 4 .95 - -05  1 . 5 7 + 0 0  1 . 5 7 + 0 0  3 2 0  5 .60- -05  4 .23 - -06  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  
53 1 5 .56- -05  3 .06- -05  9 .60- -01  1 . 1 7 + 0 0  121  5 .47- -05  4 .79- -05  - - 2 . 0 3 + 0 0  - - 2 . 2 3 + 0 0  
5 2 1  5 .41- -05  1 .45--05 - - 2 . 9 6 + 0 0  - - 3 . 1 1 + 0 0  1 6 0  5 .23- -05  2 .18- -05  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  
2 3 1 5.08 -- 05 1.98 -- 05 2.30 + 00 2.00 + 00 2 3 0 5.02 -- 05 4.74 -- 05 --3.14 + 00 3.14 + 00 
3 2 3  4 .98 - -05  2 .20- -05  - - 2 . 0 9 + 0 0  - - 2 . 2 1 + 0 0  6 1 0  4 .95- -05  5 .37- -05  3 . 1 4 + 0 0  3 . 1 4 + 0 0  
5 3 0  4 .94 - -05  5 .47- -05  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  2 3 3  4 .85- -05  3 .23- -05  2 . 0 8 + 0 0  2 . 1 6 + 0 0  
0 3 4  4 .79 - -05  3 .16- -05  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  1 3 2  4 .31- -05  3 .20- -05  - - 1 - 1 2 + 0 0  - - 1 . 4 3 + 0 0  
1 12 4 .23 - -05  9 .14 - -06  2 . 7 1 + 0 0  1 . 9 8 + 0 0  35 1 4-18--05 4 .44 - -05  --1 .01--01 2 .51 - -02  
3 1 1 4 .17 - -05  3 .43- -05  - - 2 . 3 0 + 0 0  - - 2 . 4 4 + 0 0  91 1 3 .97- -05  1 .89--05 - - 2 - 6 9 + 0 0  - - 2 . 6 3 + 0 0  
6 3 2  3 .92- -05  3 .28- -05  1 . 1 9 + 0 0  1 . 0 7 + 0 0  3 0 1  3 .88- -05  3 .18- -05  1 . 5 7 + 0 0  1 . 5 7 + 0 0  
2 4 1 3.86--  05 5 .38- -05  1.50 + 00 1.49 + 00 9 3 1 3 .76- -05  3 .64- -05  1.78--01 3.24--  01 
2 4 0  3-76--05 8 .63- -06  - - 3 . 1 4 + 0 0  3 . 1 4 + 0 0  0 1 4  3 .74- -05  1 . 6 2 - 0 5  1 . 5 7 + 0 0  1 . 5 7 + 0 0  
3 7 0 3.60 -- 05 7.64 -- 06 1.57 + 00 1.57 + 00 2 1 3 3.58 -- 05 4.57 -- 05 6.48 -- 01 1.29 + 00 
0 4 3  3 .51- -05  5 .11- -05  3 . 1 4 + 0 0  3 . 1 4 + 0 0  0 6 2  3 .48- -05  3 .41- -05  0.00 + 00 0.00 + 00 
5 1 3  3 .43- -05  2 .46- -05  - - 1 . 6 4 + 0 0  - - 1 . 3 6 + 0 0  2 3 2  3 .34- -05  3 .25- -05  2 . 4 3 + 0 0  2 - 8 1 + 0 0  
2 5 0  3 .30- -05  3 .07- -05  0 . 0 0 + 0 0  0 . 0 0 + 0 0  4 4 1  3 .24- -05  2 .64- -05  - - 2 . 6 8 + 0 0  - - 2 . 7 9 + 0 0  
2 5 2  3 .21- -05  1 .47--05 --5 .71--01 --1 .84--01 2 2 3  3 .05- -05  9 .44- -06  2 . 9 5 + 0 0  3 . 1 0 + 0 0  
0 4 4  2 .97- -05  3 .97- -05  - - 3 . 1 4 + 0 0  3 . 1 4 + 0 0  5 7 0  2 .91- -05  7 .30- -06  1 . 5 7 + 0 0  1 - 5 7 + 0 0  
2 0 3  2 .84- -05  3 .70- -05  - - 1 . 5 7 + 0 0  - - 1 . 5 7 + 0 0  3 0 3  2 .75- -05  1.46--05 1 . 5 7 + 0 0  1 - 5 7 + 0 0  
3 13 2 .55- -05  2 .77- -05  - - 2 . 0 0 + 0 0  - - 2 . 0 1 + 0 0  6 6 0  2 .51- -05  2 .15- -05  - - 3 - 1 4 + 0 0  3 . 1 4 + 0 0  
123  2 .46- -05  2 .07- -05  - - 1 . 5 1 + 0 0  - - 1 . 5 0 + 0 0  4 0 2  2 .46- -05  2 .71- -05  0 . 0 0 + 0 0  0 . 0 0 + 0 0  
3 4 2  2 .44- -05  1 .87--05 1 . 7 5 + 0 0  1 . 6 3 + 0 0  2 2 4  2 .41- -05  6 .74- -06  - - 1 - 3 6 + 0 0  - - 1 . 5 8 + 0 0  
3 2 2  2-28--05 1 .46--06 --7 .73--01 - -3 .59--01 8 5 0  2 .27- -05  4 .29 - -06  - - 3 . 1 4 + 0 0  3 . 1 4 + 0 0  

T h e  f i rs t  ' t i m e '  s t e p . w a s  c h o s e n  to  be  At o = 100. T h e  

d e n s i t y  c u t - o f f  

I 
10 -12 i f n ( x y z , t )  < 10 -12 (35) 

n(xyz,t) = (1 -- 10 -6) ifn(xyz,t) > (1 - -  10 -6)  

[n(xyz,t) if  10 -~2 < n(xyz, t)  < (1 - 10 -6)  

w a s  used .  

A s  m e n t i o n e d  in § 1 t h e  m a i n  s h o r t c o m i n g  o f  t h e  

c r y s t a l  s t r u c t u r e  d e t e r m i n a t i o n  is a s s o c i a t e d  w i t h  

r e l a t ive  s ide  m i n i m a  o f  t h e  f ree  e n e r g y  w h i c h  a r r e s t  t h e  

r e l a x a t i o n  p r o c e s s .  T h i s  s h o r t c o m i n g  c a n  be  o v e r c o m e  

i f  t h e  f o l l o w i n g  t h r e e  c o n d i t i o n s  a re  sa t i s f ied .  

1. T h e  r e l a x a t i o n  o c c u r s  a t  t he  h i g h  t e m p e r a t u r e  to  

s u p p r e s s  t h e  m e t a s t a b l e  s t a t e s  ( to e l i m i n a t e  t h e  r e l a t i ve  

s ide  m i n i m a  o f  t h e  f ree  e n e r g y ) .  T h i s  t e m p e r a t u r e ,  
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however, should always be below the critical tempera- 
ture of the 'order-disorder'  transition (Khachaturyan, 
Semenovskaya & Vainshtein, 1979) 

TO = v(1 -- v) max[a(H) Iexp(H)] (36) 

[compare with equation (2.62) of Khachaturyan 
(1978)], where the symbol max[ ] implies the maxi- 
mum value of the function within the brackets. 

2. The initial distribution n(xyz,O) should be close to 
the state of the absolute minimum corresponding to the 
real structure of the crystal. Since the real structure of 
the crystal is unknown we started the crystal structure 
determination from the initial distribution n(xyz,O) 
produced by the random-number generator. 

3. The R index (13) and (27) depends on a small 
number of strong intensities Iexp(hkl ) [small number of 
non-zero weight coefficients a(hkl)]. 

A decrease in the number of reflections taken into 
account in the R index [see (13)] yields a decrease in 
the number of relative minima of the R index. It 
improves our chances to attain the absolute minimum 
of the free energy (31). 

In the case under consideration, condition 3 was 
satisfied because (27) depends on only four normalized 
intensities. One of these four reflections is 000. Its 
structure amplitude by definition is equal to v.* 

Three other reflections were selected to meet the 
following characteristics: 

(i) Maximal intensities Iexp(hkl ). 
(ii) Phases of the selected structure amplitudes may 

be changed independently by the value n if the 
appropriate shift of the origin in the unit cell is made. 

(iii) Good 'couplings' of the three selected structure 
amplitudes with all others. 

Condition (i) is taken since it is easier to get the 
coincidence of the calculated and observed amplitudes 
for weak reflections than for strong ones (Vainshtein & 
Kayushina, 1966). Thus, strong reflections are more 
valuable. The selection of a reflection triplet satisfying 
condition (ii) results in the situation when the phases of 
the reflections can be considered to be known with 
reasonable accuracy. Finally, condition (iii) enables us 
to determine the rest of the structure amplitudes 
proceeding from the selected triplet. 'Coupling' of 
amplitudes corresponding to various reciprocal-lattice 
vectors occurs owing to the nonlinear logarithm term in 
(27). It provides the interrelation between all ampli- 
tudes and their phases and eventually is the sole reason 
why the phase determination proves to be possible. The 
simplest way to select a triplet of reflections providing 

the best 'coupling' is to carry out several iterations (29). 
The triplet which yields the maximal number of 
non-zero amplitudes after iteration should be con- 
sidered as the best one. 

The two best triplets for L-proline which possess the 
three above-mentioned characteristics are 

211,720, 321 (37a) 

and 

211,210,720.  (37b) 

Regardless of the fact that the kernel of (27) depends 
on as little as four normalized intensities, the high- 
temperature solution of (27) at t --, c~ proceeding from 
the random density distribution n(xyz,O) gives the 
rough structure of the crystal. The solution was 
obtained with about 200 successive iterations (29) with 
the weight factors 

~ 3 for 000 

~ 3, 6 and 9 for 211,720 
a(hk l )=]  and32 1, respectively 

! 
k.0 for other reflections 

(38) 

at the temperature T = 9 x 10 -5 close to the critical 
temperature. The critical temperature T o is determined 
by (36): 

T O = v(1 - v) max[a(hkl) Iexp(hkl )] 
= v(1 - v)a(211)Iexp(211) 
= 0 . 0 6 8 ( 1 -  0 .068)x  3 x 5.1866 x 10 -4 

= 9.86 x 10 -5. 

The details of the calculation procedure are described 
at the beginning of this section. The calculation results 
obtained for the triplet 211,720, 321 are listed in Table 
2. The columns of Table 2 are the reflection numbers, 
Miller indices (hkl), the array of the normalized 
intensities Iex~(hkl), the phases ~Orand(hkl) corre- 
sponding to the random initial distribution n(xyz,O), 
calculated phases ~P99(hkl) and tP197(hkl ) after 99 and 
197 iteration cycles and the true phases (Ptrue, 

respectively. 
The surprising characteristic of the proposed tech- 

nique is that even use of the array consisting of only 
four reflections yields the true phases of the 23 
strongest reflections (compare columns 6 and 7). This 
takes place although at t --, oo the linear R index 

* The zeroth term of  (27) corresponding to H = (hkl) = 0 is 
a(O)[(I/N Zr n(r)) 2 - v 2] v. It ensures the conservation condition of  
'particles'.  The  latter enables us to avoid the complication 
associated with the limitation (8). We, in fact, consider the model 
crystal  as a system with a variable number  of  particles. 

RL= Y p(hkl)[[l(F(hkl))l - IFe,,p(hkl)l] [ 
]hkl} 

x [(~t} p(hkl)lFe,,p(hkl)l]-' (39) 
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Table 2. Calculated phases of  the 48 strongest reflec- 
tions for L-proline after 99 and 197 iteration cycles at 

T = 9 x  10 -5 (T 0 = 9 . 8 3 x  10 -5 ) 

Calculation begins with the triplet 211, 720, 320 and random 
density n(r, 0). The R£ value is 0.97 after 197 iteration cycles. 

Iexp 
N h k l (x 10 4) (9rand ~099 q9197 (Ptrue 

1 0 0 0 46"000 0 0 0 0 
2 0 0 2 16" 198 n 0 0 0 
3 0 2 0 6.401 n n n n 
4 2 1 1 5" 186 1.578 1.468 1.470 1.428 
5 2 1 0 4.940 0 n n n 
6 0 4 0 4.757 0 n n n 
7 0 4 2  3.915 n n n n 
8 4 0 0  2.736 0 0 0 0 
9 5 1 0 2.561 --n/2 n/2 n/2 n/2 

10 4 2 0 2.555 0 n n n 
11 4 1 0 2.532 n n n n 
12 20  1 2.311 n/2 n/2 --n/2 --n/2 
13 7 2 0 2.116 --n/2 --n/2 --n/2 --n/2 
14 2 0 0 1.990 n n 0 0 
15 0 3 2 1.940 n/2 n/2 --n/2 --n/2 
16 3 4 0 1.860 --n/2 --n/2 n/2 n/2 
17 2 1 2 1.587 0.496 1.726 --3.038 --2.889 
18 7 2 1 1.555 --2.685 --3.044 --3.156 --3.122 
19 3 3 0 1.494 n/2 n/2 --n/2 --n/2 
20 3 2 1 1.474 --3.222 --3.187 --3.185 --2~35 
21 2 0 2  1.417 0 0 0 0 
22 5 2 0 1.397 --n/2 --n/2 --n/2 --n/2 
23 5 5 0 1-169 n/2 n/2 --~/2 - n / 2  
24 0 1 1 1.145 -n/2 -n/2 n/2 -n/2 
25 1 0 3 1.037 n/2 n/2 -n/2 n/2 
26 61 1 1.029 -1 .389  -1 .138  1.537 1.565 
27 1 0 1 1.023 - n / 2  - n / 2  - n / 2  n/2 
28 5 1 2 0.991 -0-842 1.622 1.628 2.116 
29 3 4 1 0-983 0-156 0.056 -0 .014  1.293 
30 0 1 2 0.957 n/2 n/2 n/2 n/2 
31 3 3 2  0.916 -1 .384  -1 .550  -1 .601 -1 .679  
32 2 2 2  0-857 1.513 -0 .867  -2 .753  -1 .610  
33 2 5 1  0.842 -1 .057  -1 .700  -1 .607  -1 .471 
34 4 3 1 0.840 1.244 -1 .732  -1 .635  1.775 
35 0 2 1 0.832 n n n 0 
36 0 2 2 0.819 n n n n 
37 6 0 0  0.791 n n n n 
38 3 1 0 0.789 n/2 n/2 n/2 n/2 
39 0 4 1 0.777 0 0 n n 
40 5 4 1 0.761 2.561 2.476 -0 .019  O. 184 
41 0 6 0 0.708 0 0 n 0 
42 3 12 0.691 -1 .226  -1 .322  1.768 2.027 
43 4 3 0 0.677 n 0 n 0 
44 5 2 2 0.675 --1.094 -1 .830  --1.595 -1 .948  
45 6 3 0 0.666 0 0 n 0 
46 7 2 2  0.652 2.008 --2.195 -1-569 -1 .221 
47 0 2 3 0.647 0 0 n 0 
48 6 2 0 0.634 n 0 n 0 

is equal to 0.97 only and the densities are limited by the 
range 0.04 < n(xyz,oo) < 0.14. The maximal dis- 
crepancy of phases is 48 ° for 321.* 

* Similar results were obtained for the triplet (37b). The analysis 
of 20 other various triplets demonstrated that the ten strongest 
reflections always have true calculated phases regardless of the fact 
that the 'coupling' of the triplets under investigation with other 
reflections is not good enough,[condition (iii) is not satisfled]. 

Table 2 shows that the phases of weak reflections are 
not improved during the high-temperature relaxation. 
An improvement may be achieved if the temperature is 
lowered, the addditional reflections are included in the 
input intensity array and the new relaxation process 
starts from the initial distribution n(r,0) designed 
making use in (24) of the phases of the strongest 
reflections. 

The successive solutions of (27) carried out with the 
gradual extension of the input intensity array and 
decrease of the temperature are, actually, the stages of 
the refinement process. As the temperature decreases, 
the system approaches the location of the absolute 
minimum of the R index, the function n(r,m) reaching 
the value 1 inside a sphere, simulating an atom, and 0 
outside it. It should, however, be mentioned that the 
cut-off procedure (35) does not allow one to get to the 
theoretical limit R L --, O. 

The calculations showed that in the opposite case 
when the temperature T exceeds the critical tempera- 
ture T O heterogeneities dissipate and at t--, oo the 
transition to the disordered state n(r, oo) = v occurs. The 
latter is in complete agreement with the theoretical 
conclusions. 

Below we shall give a brief account of the structure 
determination procedure for L-proline. The procedure 
consisted of several stages. Each ith stage is the 
solution of (27) at the temperature T~ when the kernel of 
(27) depends on the intensities of the M i strongest 
reflections from Table 1. The calculation in each ith 
stage begins with the designing of the initial distri- 
bution nt(xyz,O) at t = 0. To do this the phases of the 
M t strongest reflections calculated from solution of (27) 
at t--, oo in the foregoing ( i -  1)th stage were used in 
(24). Analogously, the phases of Mi+ 1 strongest 
reflections calculated from the densities ni(xyz,c~) were 
used in the (i + 1)th stage and so on. 

The value M i in all stages (except the first stage when 
M 1 = 4) is the number of strongest reflections of Table 
1, selected for the calculations at the ith stage. The 
design of the initial distribution ni(r,0) was always 
carried out on the basis of (24), where 

~" 1 
A~(hkl, O) = -~ X/Iexp(hkl) cos ¢~_ l(hkl) 

1 
Bi(hkl, O) = -~ V/Iexp(hkl) sin ¢,_ l(hkl) (40) 

At(000,0) = v 

Bi(000,0) = 0. 

q;i-1(hkl) is the phase of the reflection hkl calculated in 
the ( i -  1)th stage [the phases ~00(211), ~00(720), ~00(321) 
for the first stage are presented in the column for ~0197 of 
Table 2], Kl is the attenuation factor. The numerical 
values of the coefficients K t are listed in Tables 3 and 4. 
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Table 3. The calculation scheme for the six-stage 
procedure of the crystal structure determination for 

L-proline 

A number M l is the input intensity array in the ith stage of 
calculation, T I is the temperature, K t is the attenuation factor in 
equation (40). The R~ index is calculated for I00 reflections. 

i 
(number of 
the stage) 1 2 3 4 5 6 

M 4 -* 15 --, 25 -* 35 ~ 60 --, 90 --, 
T 10 -5 10 -5 10 -5 10 -5 10 -4 10 -7 
K 20 20 20 20 10 5 
R L 1.06 0.93 0.85 0.82 0.32 0.21 

Table 4. The calculation scheme for the three-stage 
procedure of the crystal structure determination for 

L-proline 

The R L value is calculated for the 100 strongest reflections 
[equation (39)1. 

i 
(number of 
the stage) 1 2 3 

M 4--, 15-* 25--* 
T 10 -s 10 -5 10 -~ 
K 20 20 20 
R L 1.06 0.93 0.45 

All amplitudes with the exception of those referred to 
the M i reflections of the input array were put to zero. 

The weight factors a(hkl) used in (27) in the first 
stage were 

1 for H = 000 

1 5 ,  10 and 20 for 211,720 

a ( h k l ) - | (  and 321 respectively* (41) 

k.0 for other reflections. 

In the following stages 

1(" for H = 000 

for first M l reflections (42) 
a(hkl) = - - i n  Table 1 

for all others. 

The equilibrium states were attained after about 100 
iteration cycles of (29) in all stages when the free 
energy did not change any more. Determination of the 
L-proline structure consisted of six stages. The charac- 
teristics of these stages, viz the number of reflections Mi 
of the input array, the temperature T~ and the 
attenuation factor K~ are presented in Table 3. Each 
arrow designates the relaxation process [the solution of 
(27) from the initial densities n(r,0) to the equilibrium 

* The coefficients a(hkl) for the triplet (37b) were 5, 5 and 10, 
respectively. 

densities n(r, oo)] at given T t and M i. The numerical 
values in the last line of Table 3 describe the linear R~ 
index (39) of the equilibrium distribution calculated 
over the 100 strongest reflections during the ith stage. 
Table 1 gives the calculated intensities and phases of 
these 100 strongest reflections after 150 iteration cycles 
of the final stage of the crystal structure determination. 
The R L value for these 100 reflections is 0.211. All 
calculated phases were found to be true values 
(compare the columns ~0true and ~0 in Table 1). The 
maximal deviation of phases is 41.8 ° for the 112 
reflection. The root-mean-square deviation calculated 
for the 100 reflections is 10.6 °. Fig. 2(a) displays the 
numerical values of the final density function n6(xyz,~ ) 
in ten sections normal to the z axis and separated by 
the distance dz = 0.1 (0. lc = 0.52 A). The distances 
between the nearest sites of the net (30) in the xy plane 
are 0.05 and correspond to 0.05a = 0-58 A and 0.05b 
-- 0.451 A, respectively. Fig. 2(a) shows the irreducible 
part of the unit cell. The same sections of the model 
crystal with the true positions of atoms substituted for 
spheres are displayed in Fig. 2(b). The area of the 
sections of spheres in Fig. 2(a) is larger than that in 
Fig. 2(b). This effect was caused by the temperature 
fluctuations which are inherent to the proposed 
thermodynamic approach. In fact, the calculations 
carried out at various temperatures showed that the 
area of the sphere sections decrease if the temperature 
is lowered. 

Comparison of Figs. 2(a) and 2(b) shows that the 
L-proline structure is determined correctly. Small 
displacements of atomic positions with respect to the 
true ones are observed for carboxyl group atoms C(1), 
O(1) and 0(2)  only. These displacements, however, do 
not exceed the distance between the nearest sites of the 
grid and, therefore, are within the calculation accuracy. 
The other reason for these displacements may be 
associated with the approximations of the model, viz 
replacements of C, N and O atoms by spheres and 
ignoring the H-atom contribution to the scattering 
amplitude. 

The densities n6(r, cxD ) displayed by Fig. 2(a)"were 
obtained proceeding from the triplet 211,720, 321. The 
same results for n6(r, oo ) were obtained proceeding from 
the triplet 211,210, 720. 

Fig. 3 shows five sections of the function n3(r,oo ) 
calculated in the three-stage procedure with the 25 
reflections included in the input array on the final stage 
(see Table 4). These sections were selected to reveal the 
places where the difference with the corresponding 
sections in Fig. 2(a) can be observed. Regardless of the 
large R~ value (R L = 0.45), the calculated structure is 
still close to the true one. Some difference is observed 
for the C(1) atom in the carboxyl group. Fig. 3 shows 
that the C(1) atom is located in the section z = 0-85 
instead of the section z = 0.15. Decrease of density 
na(r, oo) in the position of the C(4) atom and a slight 
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(a) (b) 

Fig. 2. (a) Densities n6(xyz,oo) at all N = 1000 sites of the grid in the irreducible part of the unit ce]l of L-proline ( ~  x ½b x c) calculated 
in the six-stage scheme illustrated in Table 3. Each section contains 10 x 10 sites in the xy plane. The numbers characterize the z coordi- 
nate of the section. The solid contours envelop the regions where n6(xyz,oo) >_ 0.56. (b) Densities corresponding to the true distribution 
function for the model crystal assuming the values 1 inside the sphere and zero outside it. Centres of a sphere with the radius r o = 0-65 
are located in the true positions of C, N, and O atoms of L-proline. The solid contours envelop regions where densities are equal to unity. 
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shift of the neighbouring C(2) and C(3) atoms of the 
pyrrolidine ring C(2)C(3)C(5)N by a unit net distance 
is also observed. The obtained position of the C(1) 
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0 .0010 .56  1.00 0.75[ 0.20 0.27 10.65 0 . 5 7 [ . . ~ 1  0.00 

0.00 0.00 0.49 10.60 0.06 0.00 0.401 1.00 0.86[ 0.00 

0.00 0.00 I 0.00 0.18 0.00 0"0010"6511 1.00 0.74 I. 0.00 

0.00 0.0410.79 0.69[0.31 0.34 0.54 0.13 0.00 0.00 z=0.45 
0 . 0 0 0 . 1 4 0 . 6 8 1 0 . 3 4 0 . 0 6 0 . 3 9 0 . 6 5 0 . 0 0 0 . 0 0 0 . 0 0  

0.00 0-00 0.00 0.00 0.00 0.00 0.23 0.26 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.29 0-02 0.00 0.16 [ ' ~  0.32 0.00 0.00 

0-00 0.4711.00 1.00 0-32 0.06 0.26 0.27 0.00 0.00 
0-00 0.0010.72! 0.92 0-19 0.00 0.01 10.82 0.89[ 0.19 
0.00 000 0 0910 5210.10 0.00 o27 1100 078 000 

r ~ ' " - "  I 
0.00 0.00 I 1-00 1.0010.47 0.17 0.17 0.00 0-00 0-00 
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0.00 0 . 0 9 [ 0 . 9 4  0.71 1.0-23 0-24 0.30 0.00 0.00 0.00 

0-00 0.00 0.00 0.00 0-00 0-00 0.00 0.03 0.00 0.00 

0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 

0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.12 ~ 0.50 0.00 0.00 0.00 

0.00 0.00 0.24 0.14 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0-00 0.00 0-00 0.00 0-00 0-00 0.00 
Z =0.85 

0.00 0.00 0.00 0-00 0.00 0.01 0.16 0.00 0.00 0.00 

0.00 0-00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0-00 

0-00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0-00 

0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0-00 0.00 

Fig. 3. Densities %(xyz,oo) at five sections of the irreducible part of 
the unit cell after the three-stage procedure (see Table 4). Each 
section contains 10 x 10 sites in the xy plane. The numbers 
characterize the z coordinate of the section. The solid contours 
envelop regions where %(xyz,oo) > 0.52. 

atom is just a mirror image of its true position with 
respect to the C(2)C(3)C(5)N ring plane. In fact, this 
change is equivalent to the realization of the t rans  

configuration of the C (4) atom and the carboxyl group 
C(1)O(1)O(2) with respect to the plane of the pir- 
rolidine ring.* Since the C(4) atom is separated by 
0 . 6 A  from the plane of the pyrrolidine ring 
(Kayushina & Vainshtein, 1966) the difference between 
the structure amplitudes of the obtained t rans  con- 
figuration and the true cis configuration is not 
considerable and the selection between these two 
configurations can be made in the later stages of the 
refining procedure. 

Therefore, the intensity array including even the 25 
strongest reflections practically seems to be sufficient 
for the structure determination. Reduction of the 
intensity array to the 15 strongest reflections and 
carrying out the two-stage procedure of the structure 
determination at T = 10 -7 yields, in general, the same 
structure as that presented in Fig. 3. The resolution, 
however, becomes slightly worse [the C(2) atom is not 
resolved and R L = 0.597]. The comparison of the 
calculations with various numbers of the strongest 
reflections taken into consideration (90, 25 and 15) 
demonstrates that the structure may be solved even if 
from 15 up to 25 reflections are used. It gives a large 
time-saving effect. The three-stage crystal structure 
determination with a 25-reflection array takes about 
15 min of computer time (BESM-6). The six-stage 
calculations with the 90-reflection array take about 
1.2h. 

The above considered calculations were carried out 
for the theoretical intensities reported by Kayushina & 
Vainshtein (1966). Observed intensities were deter- 
mined by these authors by the photo method with the 
visual estimation of intensities. According to modern 
standards the accuracy of these measurements cannot 
be considered to be sufficient. However, we undertook 
similar computer calculations with the observed inten- 
sity array (Kayushina & Vainshtein, 1966). The 
calculations result in the same structure as that 
obtained for the theoretical intensity array. The 
calculated densities, however, correspond to the super- 
position of the t r a n s  and cis configurations of the true 
L-proline molecules. 

The theoretical analysis and many concrete com- 
puter calculations which were carried out in the course 
of this study enable us to believe that the application of 
the proposed method to more complex compounds with 
a larger number of atoms per unit cell would not result 
in other principal difficulties than increase in the 
computation time. We will test this conclusion by 
carrying out a crystal structure determination for an 
organic structure with 54 atoms per irreducible part of 
the unit cell. 

* Some compounds, including proline, form both trans and cis 
configurations (Kayushina & Vainshtein, 1966). 
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In conclusion, it is of importance to note that the 
proposed method can be readily extended to the cases 
when the form factors of atoms composing the crystal 
differ considerably. The improvement of the method 
would just require the introduction of several density 
functions for each type of atom and additional 
computer time. 
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Abstract lntroduetlon 

A new type of satellite has been observed in plagio- 
clases CaxNa~_x[All+xSi3_~Os] with 0.5 < x< 1. Their 
intensities are such that they could be observed only by 
applying a special focusing technique. They appear in 
the neighbourhood of some strong reflections with h + 
k = 2n, l = 2n. It is shown that the new satellites are 
most probably caused by a three-dimensional array of 
domains of two structures, differing only by small 
displacements of the atoms. Since the translation lattices 
of the two structures have the same geometry it is 
concluded that the two structures are twins of an 
acentric plagioclase correlated with a centre of sym- 
metry. The size of the domains is 80 ,/k approximately. 
The diffraction of such submicroscopically intergrown 
twins is calculated for lamellae and blocks and 
compared qualitatively with the experimental results. 
The approximate periodicity of the domains could be 
destroyed by very long exposure to X-rays. 

* Present address: Deutsches Patentamt, Zweibr/ickenstrasse 12, 
8000 M/inchen 22, Federal Republic of Germany. 
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It is well known that plagioclases 
CaxNal_x[All +xSi3_xO s] exhibit a continuous range of 
miscibility at high temperatures and tend to unmix at 
low ones. Since two diffusion processes govern the 
dynamics of this exsolution the various intermediate 
stages of unmixing are characterized by complicated 
structures, forming very complex arrays of domains 
which will be described here only briefly. With the 
generally adopted notation for indices with respect to 
the structure of pure anorthite with a = 8.18, b = 
12.88, c = 14.17 A, a = 93 ° 10', fl = 115°51 ', ~, = 
91 ° 13', we call 

areflections h + k = 2 n ,  l = 2 n ,  
breflections h + k - - 2 n +  1, l = 2 n +  1, 
creflections h + k = 2 n ,  l = 2 n +  1, 
dreflections h + k = 2 n +  1, l - -2n.  

In the composition range 0.5 _< x _< 0.8 the 
following types of satellites have been described by 
Bown & Gay (1958) while supersatellites have been 
found by Jagodzinski & Korekawa (1965): e satellites 
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